

ESP Kick-Off Workshop Project Plan Presentation

Materials Design and Discovery: Catalysis and Energy Storage

PI: Larry Curtiss

Presenter: Nichols A. Romero

October 18-19, 2010

Project Overview

Material science problems critical to DOE's energy security mission.

- Electronic structure calculations for studying:
 - Biomass conversion
 - Electric energy interfaces (Li-ion batteries)
 - Lithium-air batteries
 - Catalysis of transition metal (Ag, Au, Pt) nanoparticles
- Cross-cuts multiple efforts at ANL:
 - Energy Frontier Research Centers (EFRCs)
 - Institute for Atom-efficient Chemical Transformations (IACT)
 - Center for Electrical Energy Storage (CEES)
 - LDRD Director's Grand Challenge
 - Center for Nanoscale Materials (CNM)

Codes: GPAW

Scientific Field: Chemistry and Material Science

Project Overview (cont'd)

Material science problems are hard, really hard:

- Li-ion battery specific energy 900 W-h/kg
- Octane specific energy 13,000 W-h/kg
- Need to optimize: energy density, power density, affordability, temperature resilient

Materials discovery requires solving rational design problem:

Some things to note:

- Higher resolution (e.g. denser grids) with current methods on existing problems is useless.
- Chemically accurate methods are very expensive $(N^4, N^5, N^7, exp(N))$.
- Cheap methods (N^x , where 1 < x < 3) often fail for the most important materials (strong-correlated).
- Search through exponential large configure space of materials is non-trivial.

Project Overview (cont'd)

Mira will allow calculations on:

- Larger systems than on Blue Gene/P
- High-throughput computing on top of large MPI problems
- Loosely-coupled images for computing energy barrier (NEB)
- Some higher accuracy electronic structure calculations with the more advanced methods (e.g. QMC). [not part of this ESP, but possible future work]

Computational Approach, Numerical Methods

Kohn-Sham (KS) Density Functional Theory (DFT)

- mean-field theory using single-particle wave functions
- method formally scales as $O(N^3)$; double the problem size requires eight times FLOPs
- number of algorithms in the scientific community is dizzying
 - representations for wavefunctions
 - boundary conditions
 - methods for metals or insulators (or both)
 - many ways to minimize the Kohn-Sham energy functional

GPAW is an implementation of the PAW method

- pseudowavefunctions on a uniform real-space grid
- Projector Augmented Wave method (PAW) accurately treats core electrons
- Written in Python and C. Less than 10% of the time is spent in Python

KS equation solved through self-consistent field (SCF) iterations

- Non-linear sparse eigenvalue problem for valence electrons
- Iterative diagonalization using Residual Minimization Method Direct Inversion in the Iterative Subspace (RMM-DIIS), a Lanczos type method with no deflation
- Pulay mixing of the charge density

Computational Approach, Numerical Methods (cont'd)

- RMM-DIIS method operations. N_g , N_p , N_b are total number of grid points, projectors (~atoms), and bands (~electrons), respectively. $N_g >> N_p > N_b$.
 - Solve the Poisson equation [O(N_g)]
 - Exchange-correlation energy and potential [O(N_g)]
 - Density mixing [O(N_g)]
 - $H\Psi$ are sparse operations $[O(N_bN_g)+O(N_bN_p)]$
 - Constructing the pseudo-density [O(N_bN_g)]
 - Matrix elements and orthogonalization are dense operations (DGEMM). [O(N_b²N_g)]
 - Cholesky decomposition (Scalapack) [O(N_b³)]
 - Subspace diagonalization (ScaLAPACK) [O(N_b³)]
 - This leads to unusual Amdahl law bottlenecks.

Parallelism and Existing Implementation

Five simultaneous layers of parallelization are possible

- k-points, spins, bands, domains, and images
- only two-three layers of parallelization used in practice (bands, domains, spins/images)
- projectors are non-trivial to load-balance, would require global task scheduling (GTS)
- MPI everywhere (no threads)
- HDF5 for I/O
- Current Performance/Scalability
 - GPAW single-point energy LDA/PBE calculation scales to 8-racks of Intrepid
 - 65(85) % strong scaling efficiency (latter if you omit one-time overhead costs)
 - 20% peak of single-core performance
 - 1 minute per SCF step
 - O(N_b³) operation handled by ScaLAPACK are difficult to scale.
 - Loading Python modules and dynamic libraries pose I/O bottleneck at 8-racks
 - Present work around is ramdisk
 - William Scullin (ALCF) working on parallel loader built on top of SPI. Broadcast python libraries and dynamic libraries over tree network. Work in progress.
 - LLNL have reported similar problems on their Blue Gene/P.
 - Problem reproduced by N. Smeds (IBM).

Library and Tool Dependencies

Libraries

- NumPy: numerical Python for manipulating arrays
- Atomic simulation environment (ASE) Python for setting up calculations
- ESSL for optimized BLAS
 - heavy DGEMM use with alpha.neq.1 and beta.eq.1
- LAPACK, ScaLAPACK for dense linear algebra and parallel dense linear algebra, respectively.
- HDF5 needed for restarting calculation with wavefunctions

Tools

- HPM library for accessing performance counters
 - Current implementation requires timer to be called on MPI COMM WORLD.
- Tuning and Analysis Utilities (TAU) for performance analysis of Python, C, and MPI.
- ParaView (low priority and non-essential)
 - need help with visualization charge density, thanks to the MCS sci-vis team

Anticipated Modifications for Blue Gene/Q

Implement fine-grain parallelism

- threaded ESSL for large DGEMM
- OpenMP for C kernels

Threaded parallel dense linear algebra library

- Scalapack not ready for petascale, looking into Elemental as a potential alternative.
- Jack Poulson (Elemental developer) identified performance issues in Blue Gene/P MPI software stack; hopefully this will be resolved for Blue Gene/Q.
 - MPI_Allgather, MPI_Reducescatter
 - Ability to force MPI to use a particular algorithm needed. Discussions with B. Smith (IBM).
- Elemental is not complete and may not be complete for another year. ScaLAPACK would have to do for now.
- Basic research in dense diagonalization algorithms is needed.
 - Heavy-use of DGEMV. Lots of load imbalance.
 - Previous guess for eigenvectors/eigenvalues not used to accelerate convergence

Performance and scaling needed to run proposed problems on Mira:

- Nudge elastic band (NEB) calculations are embarrassingly parallel.
- Twice larger problems require scaling out eight times as far, still at 1 min per SCF. Big trouble if ScaLAPACK behaves poorly.

Plan for Next 6 Months Effort

- Post-doc will be interviewed in early November
- Jussi Enkovaara (CSC, Ltd.) has developed OpenMP branch of GPAW
 - Careful performance analysis of computer kernels needed.
 - MPI everywhere still has better performance than OpenMP.
- Detailed performance measurements on Blue Gene/P
 - Collecting data using TAU for the last couple of years
 - Aware of bottlenecks
- Introduce OpenMP in main code kernels:
 - Localized functions integrate and add; critical to maximize FLOP rate on BG/P
 - Interpolator and restrictor for wavefunctions and charge density
 - Poisson solver
- Some Python code will require migration to C
- A. R. Mamidala (IBM) taking a closer look at ScaLAPACK performance
- W. Scullin (ALCF) will continue to work on parallel loader
- Use projections to estimate performance on BG/Q